multiattribute hashing - significado y definición. Qué es multiattribute hashing
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es multiattribute hashing - definición

METHOD OF DIMENSION REDUCTION IN WHICH CLOSER ITEMS HAVE GREATER PROBABILITY OF BEING MAPPED TO THE SAME HASH BUCKET
Locality-preserving hashing; Locality Sensitive Hashing; Locality sensitive hashing; Locality-Sensitive Hashing; Locality preserving hashing; Locality-sensitive hash; Fuzzy hashing; Applications of locality-sensitive hashing
  • For small angles (not too close to orthogonal), <math>1 - \frac{\theta}{\pi}</math> is a pretty good approximation to <math>\cos(\theta)</math>.

2-choice hashing         
VARIANT OF HASH TABLE
ABKU hashing; 2-way chaining
2-choice hashing, also known as 2-choice chaining, is "a variant of a hash table in which keys are added by hashing with two hash functions. The key is put in the array position with the fewer (colliding) keys.
Zobrist hashing         
HASH FUNCTION CONSTRUCTION USED IN COMPUTER PROGRAMS THAT PLAY ABSTRACT BOARD GAMES
Zobris hashing
Zobrist hashing (also referred to as Zobrist keys or Zobrist signatures Bruce Moreland. Zobrist keys: a means of enabling position comparison.
Extendible hashing         
Extensible hashing
Extendible hashing is a type of hash system which treats a hash as a bit string and uses a trie for bucket lookup. Because of the hierarchical nature of the system, re-hashing is an incremental operation (done one bucket at a time, as needed).

Wikipedia

Locality-sensitive hashing

In computer science, locality-sensitive hashing (LSH) is an algorithmic technique that hashes similar input items into the same "buckets" with high probability. (The number of buckets is much smaller than the universe of possible input items.) Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search. It differs from conventional hashing techniques in that hash collisions are maximized, not minimized. Alternatively, the technique can be seen as a way to reduce the dimensionality of high-dimensional data; high-dimensional input items can be reduced to low-dimensional versions while preserving relative distances between items.

Hashing-based approximate nearest neighbor search algorithms generally use one of two main categories of hashing methods: either data-independent methods, such as locality-sensitive hashing (LSH); or data-dependent methods, such as locality-preserving hashing (LPH).